
User Manual of Extended
NuSMV

Wanwei Liu, Ji Wang and Zhaofei Wang

National Laboratory of Distributed and Parallel Processing – China

Email: {wwliu,wj,zfwang}@nudt.edu.cn

This document is part of the distribution package of the extended NUSMV model
checker, available at http://nlp.nudt.edu.cn/∼lww.

Contents

1 Introduction 3

2 Specifying ETL Properties in Extended NuSMV 5
2.1 Extended Temporal Logic . 5

2.1.1 Automata on Finite Words 5
2.1.2 ETL, the Syntactical and Semantical Definition 6

2.2 Customizing Temporal Connectives with Automata 6
2.2.1 Alphabet Declaration . 6
2.2.2 State Set Declaration . 7
2.2.3 Transition Relation Declaration 7
2.2.4 Automaton Connective Declaration 7

2.3 ETL Specifications . 8

3 Specifying AFL Properties in Extended NuSMV 10
3.1 What Is AFL? . 10

3.1.1 Syntax . 10
3.1.2 Semantics . 11

3.2 AFL Specifications . 11

4 Examples 13
4.1 A Synchronous Example . 13
4.2 An Asynchronous Example . 14
4.3 Example of Non-Star-Free Properties 15

5 Performing ETL/AFL Verification 16

2

Chapter 1

Introduction

NuSMV[CCGR99] is a model checking tool originated by CMU and ICT-irst. And It
is a re-implementation and extension of CMU SMV [McM93]. The major adaptation
arises from Clarke et al’s idea of tableau based LTL model checking [CGH94], which
directly leads to a BDD [Bry86] based symbolic LTL model checking.

Presently, NuSMVsupports verification of various temporal logics, including: CTL,
LTL, PSL (OBE part), and RTCTL.

As indicated by Vardi [Var98, Var01, NV07], temporal logics based on linear struc-
tures benefit both from the syntactical and semantical perspective. Therefore, LTL is
a much more popular specification language and, its verification problem seems more
fundamental.

However, LTL has its own inadequate feature — not all ω-regular properties can be
specified by LTL. For example, Wolper [Wol83] pointed out that the periodic proper-
ties like “p holds at least in every even moment” does not have a peer
expression in LTL.

To settle this, various temporal logics are presented to enhance LTL’s expressive
power. Vardi and Wolper [VW94] suggested three kinds of Extended Temporal Logics
(ETL, for short), namely ETLl, ETLf and ETLr, respectively. ETLs employ automata
as temporal connectives. e.g., ETLl, ETLf and ETLr respectively uses looping, finite
and repeating (Büchi, cf. [Büc62]) automata. It is known that all of these three kinds
of ETLs are as expressive as full ω-regular expressions.

ETL induces many variants [KPV01] and it is also the basis of temporal logics
like ForSpec [AFF+02] and IBM Sugar (the precursor of PSL). Moreover, LTL can be
viewed as a proper fragment of ETL.

Another useful extension is PSL [Acc04], which uses Sequential Extended Regular
Expressions (SEREs, for short) as additional formula constructs. And this logic in-
volves both linear features (i.e., FL formulas) and branching features (OBE formulas,
which are roughly CTL formulas). PSL has been accepted as an industrial standard
(IEEE-1850). Liu et al proposed a variant of PSL, namely APSL [LWCM08]. The
linear part of APSL, namely AFL, replaces SERE constructs with finite automata. In
addition, AFL also employs some operators (such as abort, trigger) which are fre-
quently used in the industrial hardware design languages (e.g. VHDL).

As an exercise, we extended Clarke’s idea to that of ETLf . We adapted NuSMVand
made it support symbolic model checking of ETLf . With the extended version of
NuSMV, users may customize temporal connectives other than the built-in operators
in LTL. Version 1.0 of the extended NuSMVallows users verifying ETL specifications,

3

and Version 1.1 further supports AFL verifications.
This manual is a supplementary material of NuSMVuser manual. Users are strongly

recommended to refer to [CCJ+07] for basic notions and infrastructures in NuSMV. If
you don’t know how to write an SMV module, or don’t know how to verify LTL/CTL
properties with NuSMV, please read [CCJ+07] first. This manual puts emphasis on the
newly introduce features in the extended version. In order not to annoy the readers, we
try to make notations and symbols coherent with the original manual.

The extended NuSMVis also an open source software, and it can be freely down-
loaded from http://nlp.nudt.edu.cn/∼lww/enusmv. Its compilation and
installation are exactly the same as NuSMV 2.4.

This is a very short user manual, and the rest is organized as follows. Chapter 2
revisits some basic notions of ETL, and then introduces the extended language features
used in defining ETL specifications. Chapter 3 briefly defines the logic of AFL, and
then illustrates how to define AFL specifications in extended NuSMV. Chapter 4 gives
some examples w.r.t. the newly introduced features. Then Chapter 5 illustrates how to
perform the ETL/AFL verification with extended NuSMV.

4

Chapter 2

Specifying ETL Properties in
Extended NuSMV

2.1 Extended Temporal Logic
It is Wolper [Wol83] who firstly extended LTL’s expressive power by adding ω-grammars
as additional formula constructs. Later, Vardi and Wolper [VW94] employed automata
as temporal connectives, and they named this family of temporal logics ETLs.

Various ETLs can be defined depending on the type of automata used in the logic.
In this document, main focus is put on ETLf — i.e., ETL with automata on finite words
as temporal operators.

Why choose this kind of extend temporal logic? First of all, it is well known that all
kinds of ETLs are preciously the same in expressiveness. Secondly, in comparison to
other types of automata, automata on finite words is much more familiar to most users.
Last but not least, ETLf has a natural correspondence to some of the most important
specification languages. For example, the logic PSL has become an industrial standard
specification language. Its core part, namely LTL WR [BFH05], can be viewed as a
proper fragment of ETLf . i.e., each LTL WR formula can be equivalently translated
to an ETLf formula with the same length.

In the sequel, without explicit declaration, the word “ETL” specially refers to
ETLf .

2.1.1 Automata on Finite Words
An automaton is a tuple A = 〈Σ, Q, δ, q, F 〉, where Σ is an alphabet; Q is a
finite set of states; δ : Q× Σ → 2Q is a transition function; q ∈ Q, is an
initial state; and F ⊆ Q, is the set of final states.

Given a word w = a0a1 . . . an. A run of w overA is sequence q0q1 . . . qn+1 ∈ Q∗

where q0 is the initial state, qn+1 ∈ F and qi+1 ∈ δ(qi, ai) for each 0 ≤ i ≤ n.
w can be recognized by A, if there is a run of w over A. The class of finite
words recognized by A is denoted by L(A). In addition, we denote by PreL(A) the
prefixes of L(A). That is, PreL(A) = {w | ∃w′, s.t. ww′ ∈ L(A)}.

5

2.1.2 ETL, the Syntactical and Semantical Definition
Fix a set AP of atomic propositions, the formal definition of ETL formulas is induc-
tively given as follows.

• Each atomic proposition p ∈ AP is an ETL formula.

• If ϕ is an ETL formula, then ¬ϕ is an ETL formula.

• If ϕ1 and ϕ2 are ETL formulas, then ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 are ETL formulas.

• If A is an automaton whose alphabet is {a1, . . . , an}, and ϕ1, . . . , ϕn are ETL
formulas, then A(ϕ1, . . . , ϕn) is an ETL formula.

Semantics of ETL formulas are defined w.r.t. linear models, each model π is an
ω word in (2AP)ω. For the model π, let π(i) be its i-th letter and let π[i] be its suffix
starting from the i-th letter. Clearly, π[0] = π. Inductively, .

• π |= p if and only if p ∈ π(0).

• π |= ¬ϕ if and only if π 6|= ϕ.

• π |= ϕ1 ∨ ϕ2 if and only if either π |= ϕ2 or π |= ϕ2; π |= ϕ1 ∧ ϕ2 if and only
if both π |= ϕ2 and π |= ϕ2.

• Suppose that A is an automaton whose alphabet is {a1, . . . , an}. Then, π |=
A(ϕ1, . . . , ϕn) if and only if there is some w ∈ L(A), such that for each i < |w|,
if the i-th letter of w is ak, then π[i] |= ϕk.

Note. An n-letter automaton is viewed as an n-ary temporal connective, and each letter
acts as a place holder. The order among letters is extremely important, hence, it is more
proper to view the alphabet as a vector, other than a set.

2.2 Customizing Temporal Connectives with Automata
The extended NuSMV allows users to define their own temporal connectives by writing
finite automata.

An automaton definition consists of the declaration of alphabet, state set and tran-
sition relations. The following shows how these features described by the extended
NuSMVlanguages.

2.2.1 Alphabet Declaration
The alphabet of an automaton is a non-empty list of letter names, each letter name

can be an arbitrary meaningful identifier. The definition of legal identifier can
be found in [CCJ+07].

alphabet_decl ::
letter_list

letter_list ::
letter_name

| letter_list,letter_name

letter_name :: identifier

6

2.2.2 State Set Declaration
For declaring the state set, one also need a list of identifiers. Moreover, it is also
necessary to identify the initial and final states.

state_set_decl :: STATES: state_list

state_list :: state_decl
| state_list, state_decl

state_decl :: state_name
| >state_name
| state_name<

state_name :: identifier

State declaration starting with “>” indicates an initial state; and state declaration
ending with “<” indicates a final state. Notice that the symbol of “>” or “<” is not a
part of state name.

In the state set declaration, a unique initial state is required (otherwise, NuS-
MVreports an error), and at least one final state is required (otherwise, NuSMVpro-
duces a warning).

2.2.3 Transition Relation Declaration
The core part of connective definition is the declaration of transition relation.
In NuSMV, transitions are defined using the following grammar.

transitions_decl :: transition_decl;
| transitions_decl; transition_decl;

transition_decl :: TRANSITIONS (state_name) transition_body

transition_body :: case transition_def_list esac

transition_def_list :: transition_def;
| transition_def_list; transition_def;

transition_def :: letter_name : state_name |
letter_name : {state_name_list}

state_name_list :: state_name | state_name_list, state_name

Notice that for each individual state, at most one transition decl can be defined
w.r.t. it.

2.2.4 Automaton Connective Declaration
An automaton connective declaration encapsulates the alphabet, state set and transition
relation. Automata connectives are used to “glue” other ETL formulas.

automaton_connective_decl ::
CONNECTIVE connective_name (alphabet_decl)
connective_body

7

connective_name :: identifier

connective_body :: state_set_decl transitions_decl

For example, consider the automaton demo conn depicted in Figure 2.1, its NuS-
MVdescription can be written as follows.

b

start

stop

a

waiting

b

a

a

a

Figure 2.1: An example automaton connective

CONNECTIVE demo_conn(a,b)
STATES:

>start, waiting, stop<
TRANSITIONS (start)
case

a: waiting;
b: stop;

esac;
TRANSITIONS (waiting)
case

a: {waiting,stop};
b: stop;

esac;
TRANSITIONS (stop)
case

a: {start, waiting};
esac;

2.3 ETL Specifications
ETL specifications are introduced by the keyword ETLSPEC . The syntax of this specifi-
cation is:

etl_specification :: ETLSPEC etl_expr [;]

The ETL formulas recognized by NuSMVare as follows:

etl_expr ::

8

simple_expr -- a simple Boolean expression
| (etl_expr)
| ! etl_expr -- logical not
| etl_expr & etl_expr -- logical and
| etl_expr | etl_expr -- logical or
| etl_expr xor etl_expr -- logical exclusive or
| etl_expr -> etl_expr -- logical implies
| etl_expr <-> etl_expr -- logical equivalence
| X etl_expr -- temporal next
| automaton_name(etl_expr_list) -- automaton invocation

etl_expr_list :: etl_expr
| etl_expr_list, etl_expr

Notice For ETL formulas of automaton invocations, the number of operators (i.e., the length of
etl expr list) must match the size of the automaton connective’s alphabet. The operator X
is preserved in ETL specification.

All LTL specifications can be equivalently translated to ETL specifications. For example,
consider the following connective until:

CONNECTIVE until(a,b)
STATES: >st_1, st_2<
TRANSITIONS (st_1)
case

a: st_1;
b: st_2;

esac;

Then, the ETL specification until(prop 1,prop 2) is exactly the same as the LTL
specification prop 1 U prop 2.

9

Chapter 3

Specifying AFL Properties in
Extended NuSMV

3.1 What Is AFL?
AFL (Automatarized Fundamental Logic) is the linear part of of APSL [LWCM08]. In compar-
ison to standard FL, additional formula constructs is not SEREs, but finite automata.

There are two major reasons for why replacing SEREs in the formulas with finite automata:

• Firstly, though SEREs are much convenient to write, they sometimes lack of intuitiveness.
For, the transition structures of SEREs/REs are not as clear as that of finite automata. The
combining use of these operators makes the decidability of the decidability of SERE ex-
tremely hard — e.g., transforming SEREs like (r1&r2): r3 into an equivalent automaton
is not a trivial task. This makes the symbolic verification of standard FL formulas is hard
to implement.

• Secondly, an SERE expressive may involve some newly introduced operators. Adding
these operators may make the expressing flexible, however, it would not change the ex-
pressive power. Hence, change SEREs with finite automata will not change the essence
of the logic.

3.1.1 Syntax
Fix a set AP of atomic propositions, Boolean formulas are formulas built up from AP and
Boolean connectives. Formally,

• Each p ∈ AP is a Boolean formula.

• If ϕ, ϕ1, ϕ2 are Boolean formulas, then both ¬ϕ and ϕ1 ∧ ϕ2 are Boolean formulas.

Subsequently, we inductively define AFL formulas.

• Every Boolean formula is an AFL formula.

• If ϕ, ϕ1, ϕ2 are AFL formulas, then both ¬ϕ and ϕ1 ∧ ϕ2 are AFL formulas.

• If ϕ is an AFL, then Xϕ is an AFL formula.

• If ϕ1 and ϕ2 are AFL formulas, then [ϕ1Uϕ2] is an AFL formula.

• If A is an automaton with alphabet {a1, . . . , an}, ϕ1, . . . , ϕn+1 are Boolean formulas,
then [A(ϕ1, . . . , ϕn) abort ϕn+1] is an AFL formula.

• If A is an automaton with alphabet {a1, . . . , an}, ϕ1, . . . , ϕn are Boolean formulas, and
ψ is an AFL formula, then [A(ϕ1, . . . , ϕn) T ψ] is an AFL formula.

10

3.1.2 Semantics
Unlike standard FL, semantics of AFL formulas are given only w.r.t. infinite linear models.
Inductively, given a linear model π ∈ (2AP)ω:

• For each p ∈ AP , π |= p if and only if p ∈ π(0).

• π |= ¬ϕ if and only if π 6|= ϕ.

• π |= ϕ1 ∧ ϕ2 if and only if both π |= ϕ1 and π |= ϕ2 hold.

• π |= Xϕ if and only if π[1] |= ϕ.

• π |= [ϕ1Uϕ2] if and only if ∃i ≥ 0, such that π[i] |= ϕ2 and for each 0 ≤ j < i,
π[j] |= ϕ1.

• Suppose that the alphabet of A is {a1, . . . , an}, then π |= [A(ϕ1, . . . , ϕn) abort ϕn+1]
(resp. [A(ϕ1, . . . , ϕn) T ϕn+1]) if and only if ∃w ∈ PreL(A) (resp. ∃w ∈ L(A)),
s.t. for each i < |w|, if the i-th letter of w is ak, then π[i] |= ϕk; moreover, we require
π[|w|] |= ϕn+1.

Note. There’s a slight different between abort and T: the former must be immediately followed
by a pure Boolean formula, whereas any AFL may appear after the latter.

3.2 AFL Specifications
AFL specifications are introduced by the keyword AFLSPEC .

afl_specification :: AFLSPEC afl_expr [;]

AFL formulas that can be recognized by NuSMVare as follows:

afl_expr ::
simple_expr -- a simple Boolean expression
| (afl_expr)
| ! afl_expr -- logical not
| afl_expr & afl_expr -- logical and
| afl_expr | afl_expr -- logical or
| afl_expr xor afl_expr -- logical exclusive or
| afl_expr -> afl_expr -- logical implies
| afl_expr <-> etl_expr -- logical equivalence
| X afl_expr -- temporal next
| afl_expr U afl_expr -- temporal until
| afl_expr V afl_expr -- temporal releases
| atom_etl_expr abort simple_expr -- temporal abort
| atom_etl_expr monitor simple_expr -- temporal monitor
| atom_etl_expr T afl_expr -- temporal trigger
| atom_etl_expr |-> afl_expr -- temporal leadsto

atom_etl_expr ::
automaton_name(simple_expr_list) -- automaton invocation

simple_expr_list :: -- list of Boolean expressions
simple_expr
| simple_expr, simple_expr_list

Notice that we here introduce two new keywords abort and monitor ; and the operator
|->. The operators of V, monitor and |-> are respectively the negative dual of U, reserved-
abort and T. In detail, the specifications of

11

AFLSPEC prop_1 V prop_2
AFLSPEC expr monitor prop
AFLSPEC expr |-> prop

are respectively the same as

AFLSPEC ! (! prop_1 U ! prop_2)
AFLSPEC ! (expr abort ! prop)
AFLSPEC ! (expr T ! prop).

Using these derived operators, one may put negations inward into parenthesis and hence ac-
quire the positive normal form of AFL specifications.

Notice For AFL specifications, one should pay attention to the following issues when defin-
ing/using automaton connectives.

1. The way to define automaton connectives is the same as in ETL (cf. Section 2.2.4).

2. Unlike ETL specifications, parameters of automaton connectives can only be pure Boolean
expressions.

3. In AFL specifications, an automaton formula must be immediately followed by one of the
operators of abort, monitor, T, or |->.

4. More importantly, when giving names to a user-defined automaton connective, please DO
NOT chose strings starting with sys .

12

Chapter 4

Examples

In this chapter, we demonstrate how to use the extended version of NuSMVto verify ETL speci-
fications by giving some simple examples.

4.1 A Synchronous Example
This first example is a synchronous model: octad counter. It consists of three instances of cells,
and each cell is a binary counter (mod 2) having an input signal “carry in” and an output signal,
“carry out”.

Counter cells can be modeled by the following SMV code.

MODULE cell (carry_in)
VAR

pre_value : boolean;
value : boolean;

ASSIGN
init (pre_value):=0;
init (value):=0;
next (pre_value):=value;
next (value) := (value+carray_in) mod 2;

DEFINE
carry_out : = pre_value & carry_in;

Subsequently, we create three instances of cell, namely bit 0, bit 1, bit 2, respec-
tively.

bit 0.carry in is always set to 1, bit 1.carry in is bit 0.carry out and bit 2.carry in
is bit 1.carry out. This can be described as Figure 4.1.

bit_0 bit_1 bit_2

carry_in carry_in carry_in

carry_out carry_out carry_out

1

Figure 4.1: The Octad Counter

Thus, the system is declared as follows.

13

MODULE main
VAR

bit_0 : cell(1);
bit_1 : cell(bit_0.carry_out);
bit_2 : cell(bit_1.carry_out);

Subsequently, we need to verify the property “bit 2 carries out infinitely often”
(equals to the LTL Specification G F bit 2.carry out). To fulfill this, we borrow the pre-
viously defined automaton connective until (cf. Section 2.3, Page 9) and write the specification
as follows.

ETLSPEC ! until(TRUE ,! until(TRUE ,bit 2.carry out))

4.2 An Asynchronous Example
In this section, we give an asynchronous example — inverter ring. An inverter is nothing else
but a NOT gate, and an inverter ring is a circle of serial inverters.

An inverter can be modeled as follows.

MODULE inverter(input)
VAR

output : boolean;
ASSIGN

init (output) := 0;
next (output) := ! input;

FAIRNESS
running

An inverter ring consists of n instances of inverters gate 0, . . . , gate n-1 and gate i.input
is set to gate j.output if j = (i + 1) mod n. Thus, the system can be modeled as follows.

MODULE main
VAR

gate_0 : process inverter(gate_n-1.output);
gate_1 : process inverter(gate_0.output);
......

gate_n-1: process inverter(gate_n-2.output);

Note. the keyword process indicates that each instance executes in an asynchronous way, and
FAIRNESS running guarantees that each instance is scheduled infinitely often.

Here an interesting property is that “This ring will not lead to a stable
status” — i.e., each inverter outputs 0 and 1 infinitely often. The ETL specification for
verifying this property is:

ETLSPEC !until(TRUE ,!until(TRUE ,bit_0.output=0))
& !until(TRUE ,!until(TRUE ,bit_0.output=1))

The equivalent LTL specification is:

LTLSPEC G F bit_0.output=0 & G F bit_0.output=1

One may exam that this property holds when n is an odd number, and it is violated when n
is an even number.

14

4.3 Example of Non-Star-Free Properties
In this section, we would verify some properties that cannot be expressed in LTL/CTL.

Still consider the example of Octad counter, the following properties are obviously held,
however, cannot be specified by LTL/CTL.

• “bit 0.carry out is evaluated to 1 at moments of 2, 4, 6,...”.

• “ There is a quad moment having bit 1.output=1”.

Consider the following automaton connective eventually 2 and eventually 4. It is clear that
the above two properties can be respectively sepcified as

ETLSPEC X X ! eventually 2(TRUE,!bit 0.carry out)

and

ETLSPEC eventually 4(TRUE,bit 1.carry out)

-------------- eventually_2 ---------------
CONNECTIVE eventually_2(a,b)
STATES:

>st_1, st_2, fin<
TRANSITIONS (st_1)
case

a : st_2;
b : fin;

esac;
TRANSITIONS (st_2)
case

a : st_1;
esac;
-------------- eventually_4 ---------------
CONNECTIVE eventually_4(a,b)
STATES:

>st_1, st_2, st_3,st_4, fin<
TRANSITIONS (st_1)
case

a : st_2;
b : fin;

esac;
TRANSITIONS (st_2)
case

a : st_3;
esac;
TRANSITIONS (st_3)
case

a : st_4;
esac;
TRANSITIONS (st_4)
case

a : st_1;
esac;

Analogously, one can define the temporal connectives of eventually k for every natural num-
ber k.

15

Chapter 5

Performing ETL/AFL
Verification

NuSMV 2.4 supports two verification modes: the batch mode and the interactive mode. We
apologize to the users that the extended version only supports the batch mode when doing
ETL/AFL verification.

The major difficulty lies from the inconvenience of defining automaton connective in a single
command line. This might be settled by providing additional command line read connective
(like read model) to read a connective from a file, yet, not implemented presently.

To execute the batch verification, just runs NuSMVwithout -int option. That is, input the
following command in the system prompt window.

system_prompt> ./NuSMV [command line options] input_file <RET>

Usage of command line options can be found in [CCJ+07].

16

Bibliography

[Acc04] Accellera. Accellera property languages reference manual.
http://www.eda.org/vfv/docs/PSL-v1.1.pdf, June 2004.

[AFF+02] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,
S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The forspec
temporal logic: A new temporal property-specification language. In 8th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2002), volume 2280 of Lecture Notes in Computer Science, pages
296–311. Springer, 2002.

[BFH05] D. Bustan, D. Fisman, and J. Havlicek. Automata construction for PSL. Technical
Report MCS05-04, IBM Haifa Research Lab, May 2005.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, 1986.

[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc.
Int. Congr. Method and Philosophy of Science 1960, pages 1–12, Palo Alto, CA,
USA, 1962. Stanford University Press.

[CCGR99] A. Cimatti, E. Clarke, F. Giunchiglia1, and M. Roveri. Nusmv: A new symbolic
model verifier. In N. Halbwachs and D. Peled, editors, Proc. 11th Computer Aided
Verfication (CAV’99), volume 1633 of Lecture Notes in Computer Science, pages
495–499. Springer-Verlag, 1999.

[CCJ+07] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti,
M. Pistore, M. Roveri, and A. Tchaltsev. Nusmv 2.4 user manual.
http://nusmv.fbk.eu/NuSMV/userman/v24/nusmv.pdf, Apr. 2007.

[CGH94] E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model check-
ing. In David L. Dill, editor, Proceedings of the sixth International Conference
on Computer-Aided Verification CAV’94, volume 818, pages 415–427, Standford,
California, USA, 1994. Springer-Verlag.

[KPV01] O. Kupferman, N. Piterman, and M. Y. Vardi. Extended temporal logic revisited.
In Proc. 12th International Conference on Concurrency Theory, volume 2154 of
Lecture Notes in Computer Science, pages 519–535, Denmark, 2001. Springer.

[LWCM08] W. Liu, J. Wang, H. Chen, and X. Ma. Symbolic model checking apsl. In J. Davies
and X. Li, editors, Proc. 2nd IEEE International Symposium on Theoretical Aspects
of Software Engineering, pages 39–46. IEEE Soc, June 2008.

[McM93] K. L. McMillan. Symbolic Model Checking, An Approach to the State Explosion
Problem. PhD thesis, Carnegie Mellon University, Kluwer Academic Publishers,
1993.

[NV07] S. Nain and M.Y. Vardi. Branching vs. linear time: Semantical perspective. In
Proc. 5th Automated Technology on Verification and Analysis (ATVA’07), volume
4762 of Lecture Notes in Computer Science, pages 19–34. Springer, 2007.

17

[Var98] M. Y. Vardi. Linear vs. branching time: A complexity-theoretic perspective. In
Logic in Computer Science, pages 394–405. IEEE Society, 1998.

[Var01] M. Y. Vardi. Branching vs. linear time: Final showdown. In TACAS 2001, volume
2031 of Lecture Notes in Computer Science, pages 1–22. Springer, 2001.

[VW94] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, November 1994.

[Wol83] P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1–
2):72–99, 1983.

18

Index

Automatarized Fundamental Logic, 10
AFL specifications, 11
Semantics, 11
Syntactical Definition, 10

Automaton connective declaration, 6, 8
Alphabet declaration, 6
Connective declaration, 7
State set declaration, 7
Transition relation declaration, 7

Extended temporal logic, 5
Automata on finite words, 5
Syntax and Semantics, 6

New keywords
AFLSPEC, 11
CONNECTIVE, 7
ETLSPEC, 8
STATES, 7
TRANSITIONS, 7
abort, 11
monitor, 11

19

